

Lake Tahoe TMDL

Overview of Science Program & Key Findings

Implementers Workshop January 29, 2008

Lake Tahoe TMDL Science Results

Lake Tahoe TMDL Research Program

- 1. Proactively address critical gaps in scientific understanding of Lake Tahoe's clarity loss.
- 2. Develop science-base approach for pollutant load reduction.
- 3. Develop tools to inform management decisions.
- 4. Integrate air, watershed and lake processes in a modeling framework.

Regional, National & International Experts from a Variety of Research/Technical Organizations

UC Davis

DRI

UNR

CARB

US ACOE

USGS

USDA - Nat. Sed. Lab

Tetra Tech, Inc.

Hydroikos

GeoSyntec

Lahontan

NDEP

Caltrans

NDOT

nhc

2NDNATURE

IERS

Valley+Mountain Consulting

Entrix

Countess Environmental

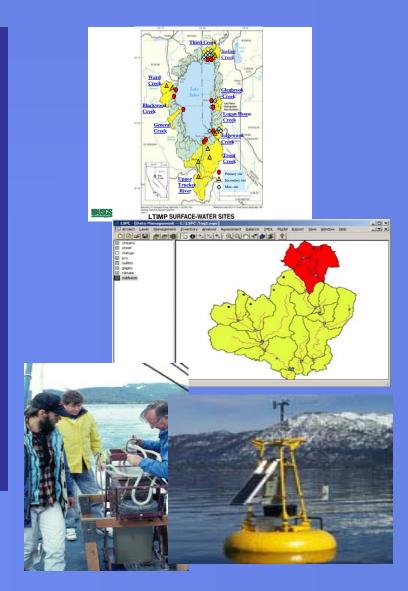
Environmental Incentives

USDA - LTBMU

USDA - NRCS

US NPS

US EPA


TRPA

NTCD

CTC

Scientific Approaches

- Historic Tahoe data
- Literature
- New monitoring
- Lab experiments
- Field experiments
- Demonstration projects
- Statistical analyses
- Modeling with verification
- Best professional judgment

Use of Scientific Models for Management

Atmospheric

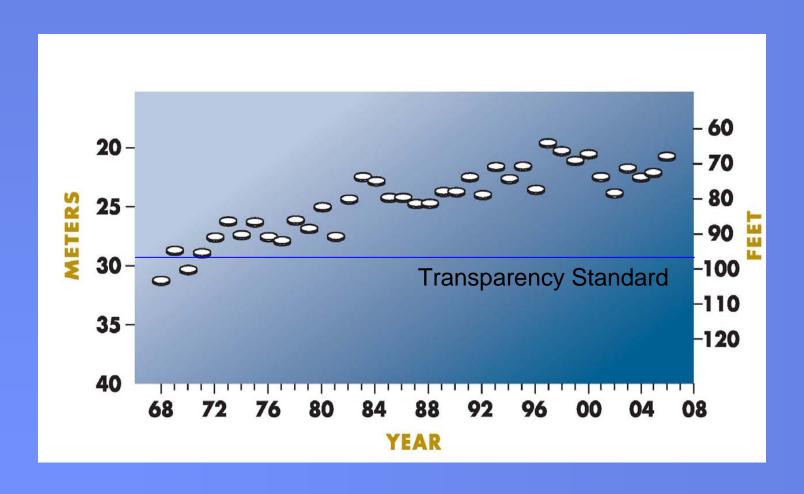
- CARB deposition modeling
- UCD DELTA LTAM

Upland

- Tetra Tech LSPC (hydrology and loading)
- Hydroikos statistical modeling
- GeoSyntec/nhc SWMM (stormwater), PLRM

Groundwater

• USACOE - load modeling


Stream Channel Erosion

Nat. Sed. Lab - CONCEPT/AnnAGNPS

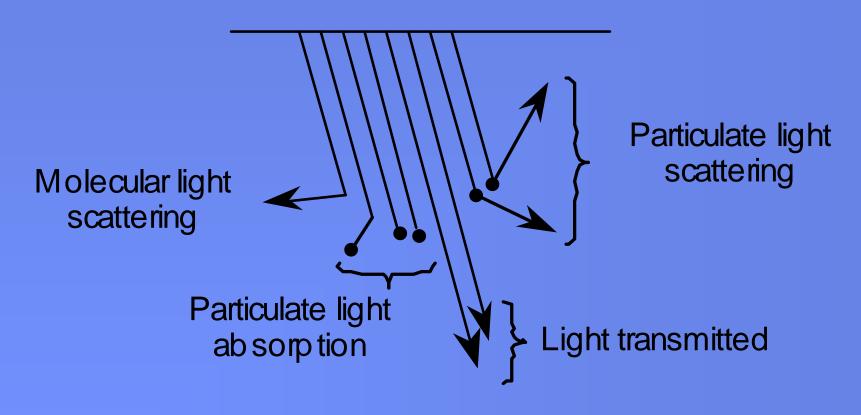
Lake Response

• UC Davis - Lake Clarity Model

Current Clarity Data

Pollutants of Concern

- Very fine sediment particles (< ~20 μm)
- Nutrients (N&P) fuel algae

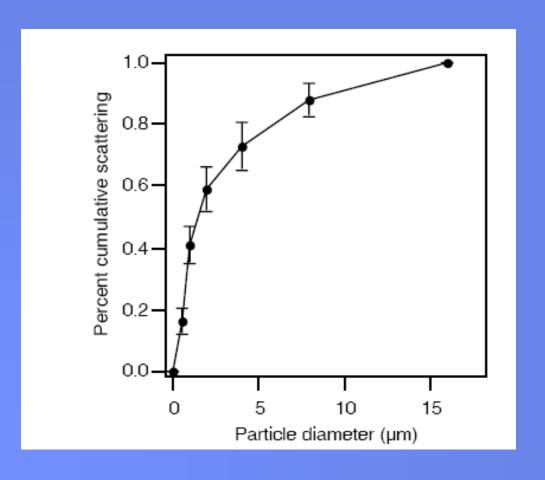


New Science - Fine Particles

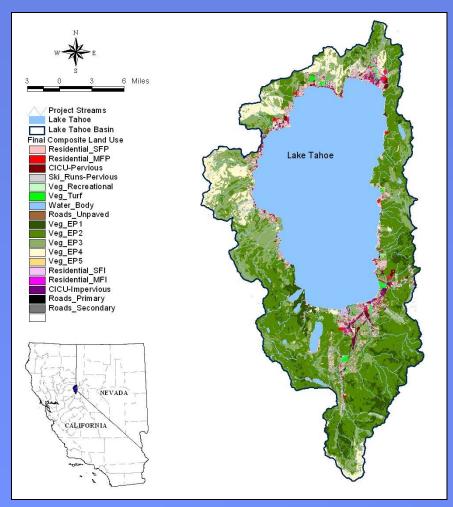
- Role of fine particles first justified by science (1999)
- Lake sampling immediately initiated (1999)
- Continued lake particle characterization (1999, 2000, 2002, 2003)
- Optical model for clarity based on particles (2004)
- TMDL stormwater monitoring (2003-04)
- Stream particle load (2002-03)
- Atmospheric deposition (2002-03)

Conceptual Diagram of Light Scattering and Absorption

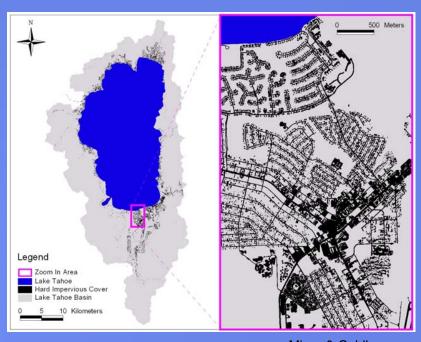
Number, Size, Composition & Distribution


Contribution of Fine Sediment, Algae, DOM and Water to Tahoe's Clarity Attenuation

 Lab results & optical model shows the following contributions to clarity:


```
Soil particles -> 55 - 60%
Organic Particles -> 20 - 25%
Water and DOM -> 15 - 20%
```

 Field monitoring shows strong relationship between number of particles and Secchi depth


Contribution of Particle Size Classes to Total Light Scattering

Reliable GIS Land-Use Layers

Tetra Tech

Minor & Cablk

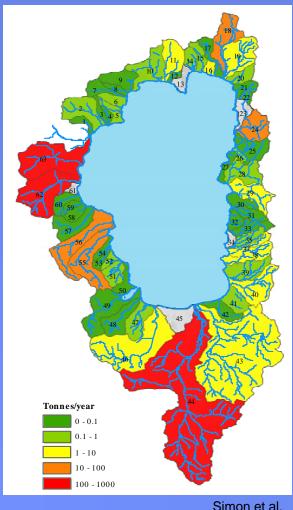
Layers have wide-spread use

Distribution of Land Use and Land Cover Classifications in the Tahoe Basin

	Area in		Impervious
	Basin	Proportion	ness of
Land Use / Land Cover (LULC)	(hectares)	of Basin	LULC
Commercial/Institutionl/Commun./Utility	1,112	1.3%	36%
Multi Family Residential	1,153	1.4%	27%
Single Family Residential	4,037	4.9%	18%
Transportation, Primary Roads	231	0.3%	100%
Transportation, Secondary Roads	1,105	1.3%	100%
Transportation, Unpaved Roads	154	0.2%	
Vegetated, Recreational and Turf	1,044	1.3%	
Vegetated, Unimpacted	72,971	87.7%	
Water Bodies (not including Lake Tahoe)	1,380	1.7%	

Atmospheric Deposition

	Dry Deposition (MT/yr)	Wet Deposition (MT/yr)
Nitrogen		
NO3	29	18
NH4	87	14
DIN	116	32
DON	31	31
TON	39	32
PN	7	<1
Total N	155	63
Phosphorus		
SRP	1.3	1.0
Total P	3.5-5.4	2.6
Particulate		
Matter		
Fine (<2.5 µm)	60	74
Course (>2.5-10 µm)	169	69
Large (>10 µm)	357	20
Total PM	586	163


UCD & CARB

Agreement in Groundwater Loading

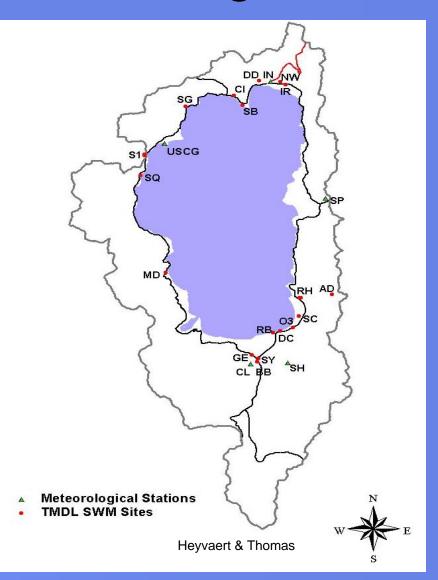
Constituent	US ACOE 2003	Thodal 1997
Total Dissolved Nitrogen (kg/yr)	50,000	60,000
Total Dissolved Phosphorus (kg/yr)	6,800	4,000
Discharge Rate (m ³ /yr)	6.4 x 10 ⁷	4.9 x 10 ⁷

Assumes no particles >0.5 µm enter via GW

Stream Channel Erosion

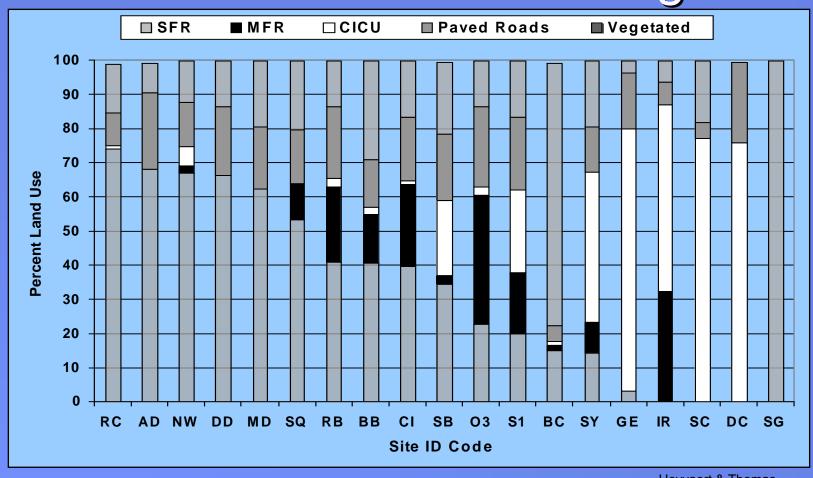
First time that total sediment and fine sediment loading from stream bed and bank erosion has been studied

Upland Loading

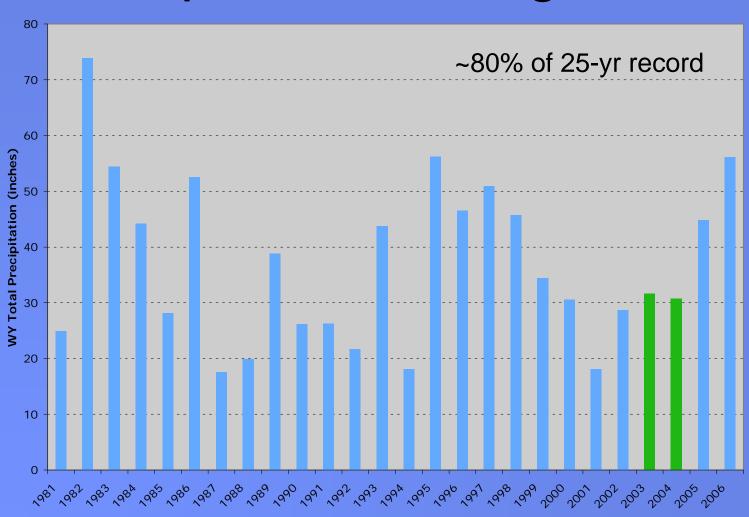

Watershed Model

- (1) Hourly data from 9 SNOTEL sites drives hydrology
- (2) Validated well at scales of storms, monthly and annual
- (3) Total N/P loads modeled each partitioned using field data
- (4) Modeled loads usually within 10-15% of LTIMP measurements
- (5) Modeled TSS and mass <63 μm, but not adequate for # of particles <20 μm by size class.
- (6) Rabidoux & Schladow measured particles in LTIMP streams and used model flow to estimate load

Stormwater Monitoring

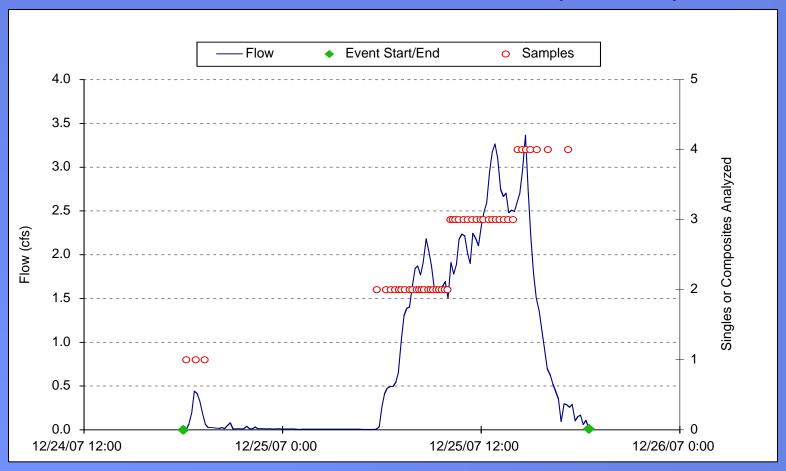

- First basin-wide monitoring program for stormwater
- Similar scope as stream monitoring
- 2003-2004

Lake Tahoe TMDL Science Results

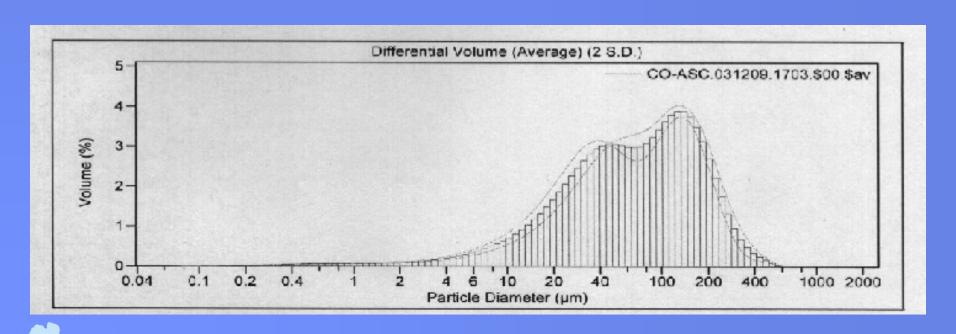

Stormwater Monitoring

Heyvaert & Thomas

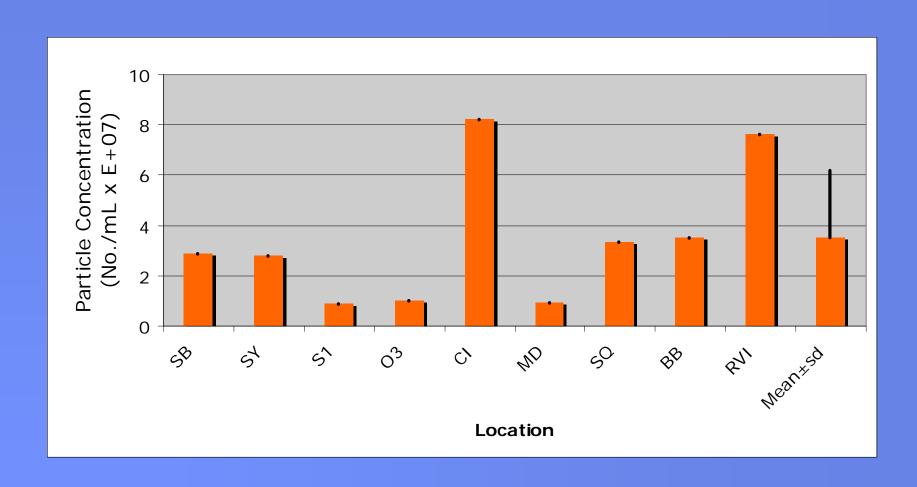
Difficult to design monitoring to target individual land use


Precipitation During SWM

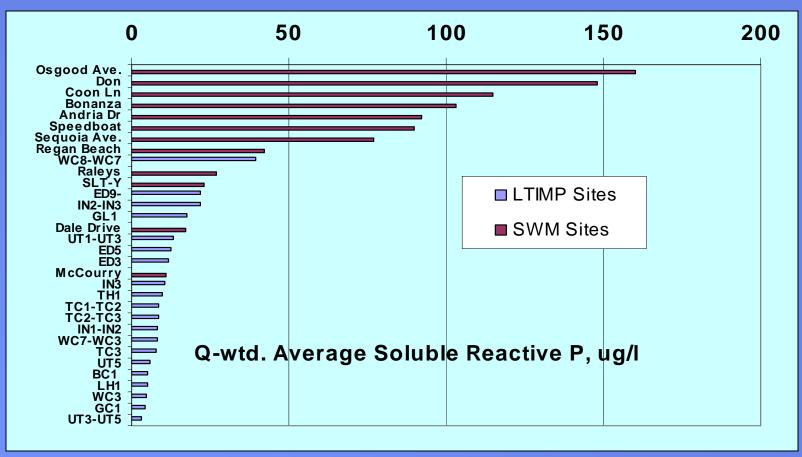
SWM Sampling Frequency


ID	Site Name	Events	Flow (%)	Events	Flow (%)
		2	003	2	004
AD	Andria Dr.	12	28%	12	12%
ВВ	Bonanza Ave.	17	82%	2	7%
ВС	Bijou Creek	na	na	43	86%
CI	Coon Street	13	na	10	4%
DC	Don Cheapo's	15	36%	21	23%
DD	Dale Dr.	16	83%	18	37%
GE	Glorene and Eighth	na	na	7	62%
IR	IV Raley's	21	38%	26	34%
MD	Mountain Dr.	4	60%	4	3%
NW	Northwood Blvd.	15	9%	28	40%
O3	Osgood Ave.	17	68%	28	58%
RB	Regan Beach	14	86%	21	15%
RC	Roundhill 4.2	20	36%	7	32%
S1	TCWTS	24	42%	26	13%
SB	Speedboat Ave.	26	86%	32	75%
SC	SLT Casinos	3	3%	32	10%
SG	Shivagiri	na	na	16	26%
SQ	Sequoia Ave.	12	na	8	7%
SY	SLT-Y	26	94%	26	74%
	mean:	16	54%	19	32%

Constant Volume Sampling for Event Mean Concentration (EMC)



Particle Size Distribution (PSD) Analysis in Stormwater Samples


- Laser diffraction backscattering: Beckman Coulter LS 13-320
- Calculated particle number concentrations using PSD and TSS data, with assumed constants

Urban Particle Distribution

Stormwater Monitoring

Gunter 2005

Coats et al. 2008

Event Mean Concentrations

- Used to assign runoff concentrations by land use
- Represent basin-wide conditions <u>not</u> specific locations
- Supported by Tahoe data or literature values
- Field data used as starting point for calibration to LTIMP stream data
- Applies to TSS, N & P not fine particles
- Residential (SF/MF) Direct SWM monitoring, 2003-04
- Commercial (CICU) Direct SWM monitoring, 2003-04

Data Sources: Accepted QAPP; Gunter 2005; Coats et al. 2008

Event Mean Concentrations

- Primary roads Caltrans (2003); NDOT/DRI (2004)
- Secondary roads same as MF residential
- Unpaved roads LTBMU McKinney Rubicon Rd., Sierra Nevada Ecosystem Project (McGurk et al. 1996)

Event Mean Concentrations

- Ski runs Heavenly, Homewood & Diamond Peak data
- Turf Adjust SF residential based on application estimates and relative lawn areas
- Harvested Used USFS Equivalent Road Area method
- Undisturbed Forest Monitoring, literature and calibration

EMCs

Can be Updated Under Adaptive Management

Land Use Name	TN	DN	TP	DP	TSS
Residential_SF (P/I)	1.75	0.14	0.47	0.14	56
Residential_MF (P/I)	2.84	0.42	0.59	0.14	150
CICU (P/I)	2.47	0.29	0.70	0.08	296
Roads_Primary	3.92	0.72	1.98	0.10	952
Roads_Secondary	2.84	0.42	0.59	0.14	150
Ski_Runs-Pervious	0.36	0.13	0.12	0.04	271
Veg_EP1	0.16	0.01	0.03	0.03	14
Veg_EP2	0.16	0.01	0.03	0.03	38
Veg_EP3	0.16	0.01	0.03	0.03	101
Veg_EP4	0.16	0.01	0.03	0.03	271
Veg_EP5	0.16	0.01	0.03	0.03	727
Veg_Recreational	1.04	0.01	0.63	0.21	460
Veg_Burned	2.34	0.01	1.52	0.48	1015
Veg_Harvest	2.34	0.01	1.52	0.48	1015
Veg_Turf	5.48	0.45	1.46	0.45	12
Roads_Unpaved	2.34	0.01	1.52	0.48	1015

Particle Size Distribution by Major Source Category

Atmospheric Deposition

- Particulate matter (PM) loading estimated by CARB (2006)
- Soil-based PM reported as <2.5, 2.5-10 and >10-35 μm
- 37% of PM<2.5 found to be soil-based, assumed 100% for others
- Conversion to particle # for 7 clarity model classes needed
- Assuming soil particles are spherical with density of 2.56 g/cm³ weight converted to number
- Interpolated to 7 size classes

PSD by Major Source Category

Stream Runoff

- TSS output from Watershed Model not adequate for particles <20 µm
- Rabidoux & Schladow measured PSD on all samples from the 'mouths' of 10 LTIMP streams in 2002 and 2003
- Regressions between streamflow and PSD developed
- Remaining streams were grouped with an LTIMP stream based on location and land-use
- Daily streamflow from Watershed Model used to estimate particle load for 7 size classes

PSD by Major Source Category

Urban Intervening Zone Flow

- Stream Flow PSD regressions not applicable for urban runoff
- Direct LTIMP and SWM field data show particle concentrations (#/mL) (<~20 μm) much higher in urban runoff
- Multiplication factor for urban particle flux was developed
- SWM data from 9 urban sites used

Urban	Runoff	3.5E+07
	1 7 211 1 2 1 1	

Streamflow 1.3E+05

Lake 7.0E+03

Urban Intervening Zone Flow

Calculation of Multiplication Factor

- Mean IZ flow (modeled) = 1 x 10⁶ m³ (1994-2004)
- IZ Flow x $3.5E+07 = \sim 3.5E+20$ particles per year
- Applying Rabidoux's eqns. to IZ we get 1.1E+10¹⁸

$$3.5E+20/1.1E+18 = 319 (0.5-16 \mu m)$$

 $7.7E+16/3.5E+15 = 22 (>16-<63 \mu m)$

 Modeled flow, Rabidoux's eqns. and multipliers used to determine basin-wide loading

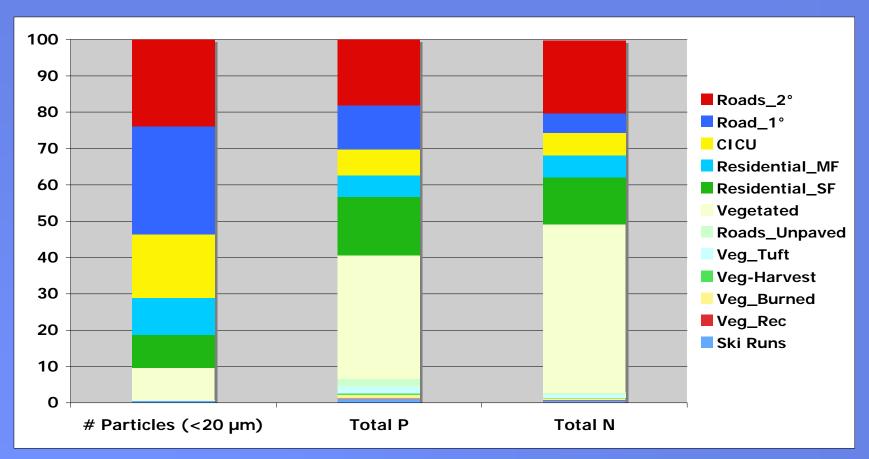
Particle Size Distribution by Major Source Category

Stream Channel Erosion

- Particle load to Lake included in stream runoff estimates
- Watershed Model found that ~30% of stream load came from stream channel erosion

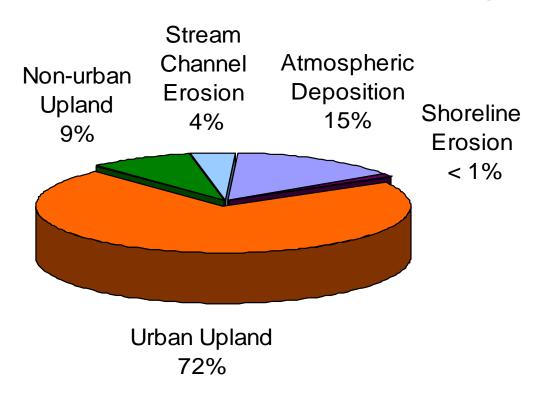
Review of Approach for Fine Particle Loading

Watershed Loading to Lake for Clarity Model

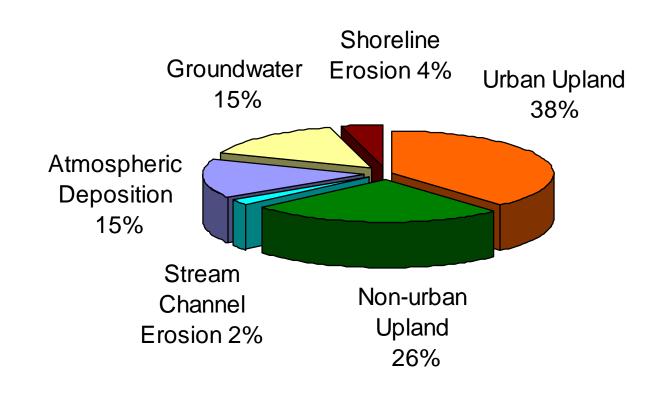

- Regressions developed for flow and PSD based on field data; modified for the collective urban region
- Modeled urban and non-urban flows used to estimate PSD loading from these broad land uses
- Clarity Model does not need to consider more specific land uses

Review of Approach for Fine Particle Loading

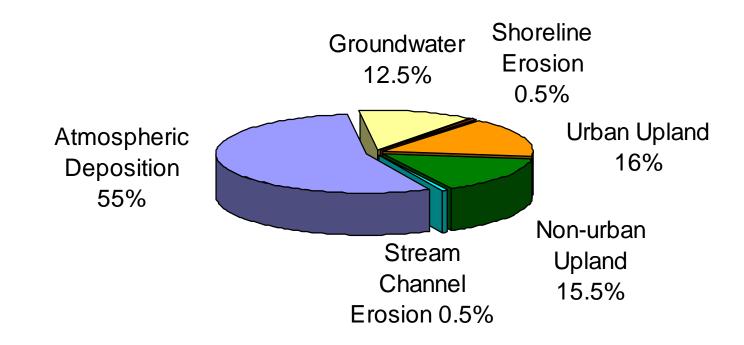
Apportioning Particle Loading by Specific Land Use


- Since land use specific urban monitoring was not feasible, apportioning was done based on TSS loading results from the Watershed Model for the various land uses
- TSS output needed to be expressed in terms of particle number
 20 µm
 - (1) Fraction of TSS <63 μm (mass)
 - For urban residential and CICU it was measured by SWM
 - For non-urban, data from LTIMP stream headwaters
 - Assumed paved roads were similar to SWM measurements
 - (2) <63 μm mass from modeled land uses was converted to PSD <20 μm based on particle #, volume of particles in a size class and soil density

Upland Loading



From Tetra Tech


Fine Sediment Particle Number Estimates (particles less than 20 micrometers): Percent Contribution per Source Category

Total Phosphorus Estimates: Percent Contribution per Source Category

Total Nitrogen Estimates: Percent Contribution per Source Category

Assumptions Based on Available Data

- Concentrations at SWM sites same as delivered to Lake
- Average EMCs applied basin-wide
- Relationship between average EMCs and flow were representative for different events, seasons and precipitation years
- When particles were not directly measured, they could be estimated from mass using a density of 2.56 g/cm³ with a spherical shape
- Modeled flow used to estimate urban & non-urban loading
- LTIMP headwaters represents non-urban particle loading

Confidence & Uncertainty

Source Category		Total Nitrogen (metric tons/year)	Total Phosphorus (metric tons/year)	Number of Fine Sediment Particles (x10 ¹⁸)
Upland	Urban	63	18	348
	Non-Urban	62	12	41
Atmospheric Deposition	(wet + dry)	218	7	75
Stream Channel Erosion		2	<1	17
Groundwater		50	7	NA**
Shoreline Erosion		2	2	1
TOTAL		397	46	481

High

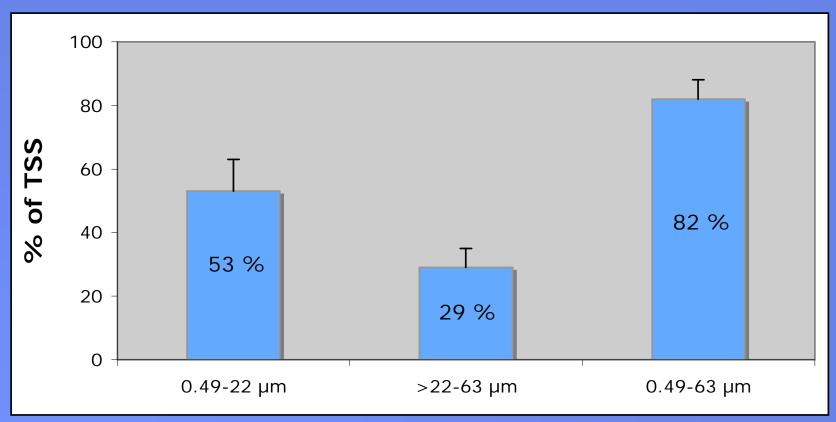
- Based on reliable and extensive field data or modeling supported by extensive field data.
- Peer-reviewed studies exist specifically for the Tahoe Basin.
- Weight of evidence provided by similarity to other independent studies for Lake Tahoe.
- Scientific reasoning supported by TMDL Team.
- Additional studies not likely to yield significantly different results.

Confidence & Uncertainty

Source Category		Total Nitrogen (metric tons/year)	Total Phosphorus (metric tons/year)	Number of Fine Sediment Particles (x10 ¹⁸)
Upland	Urban	63	18	348
	Non-Urban	62	12	41
Atmospheric Deposition	(wet + dry)	218	7	75
Stream Channel Erosion		2	<1	17
Groundwater		50	7	NA**
Shoreline Erosion		2	2	1
TOTAL		397	46	481

Medium

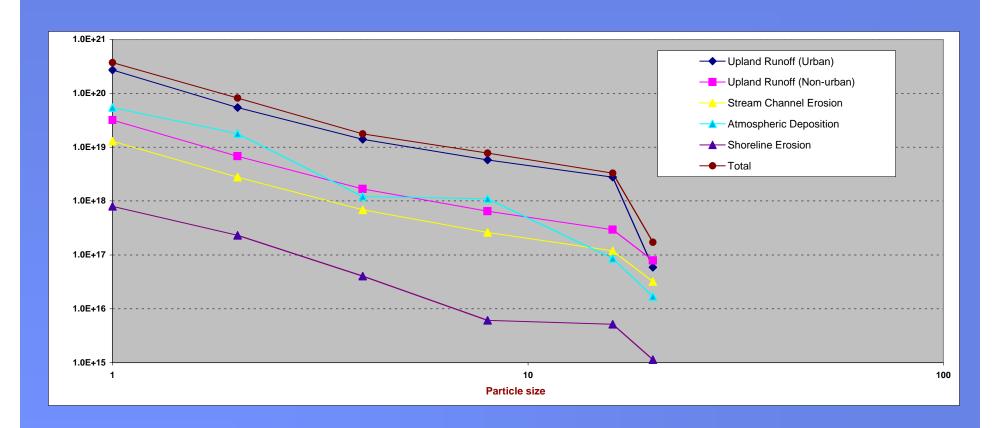
- Estimates based on field data or modeling; however, the supporting data base is either not extensive and/or comprehensive.
- Primarily non peer-reviewed studies exist for the Tahoe basin.
- Weight of evidence provided by studies for Lake Tahoe is limited.
- Additional studies will improve our understanding but not likely change broad-based management strategy.

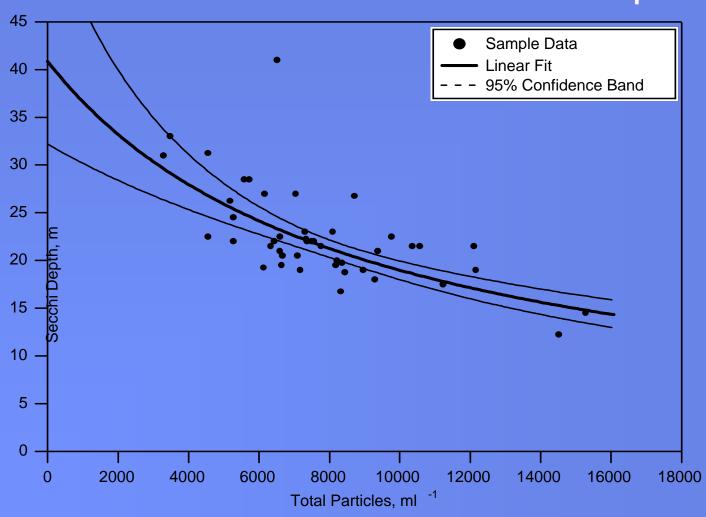

Confidence & Uncertainty

Source Category		Total Nitrogen (metric tons/year)	Total Phosphorus (metric tons/year)	Number of Fine Sediment Particles (x10 ¹⁸)
Upland	Urban	63	18	348
	Non-Urban	62	12	41
Atmospheric Deposition	(wet + dry)	218	7	75
Stream Channel Erosion		2	<1	17
Groundwater		50	7	NA**
Shoreline Erosion		2	2	1
TOTAL		397	46	481

Low

- Estimates based on a single study that was considered preliminary or not enough data was collected.
- Additional studies are needed to support management decisions.

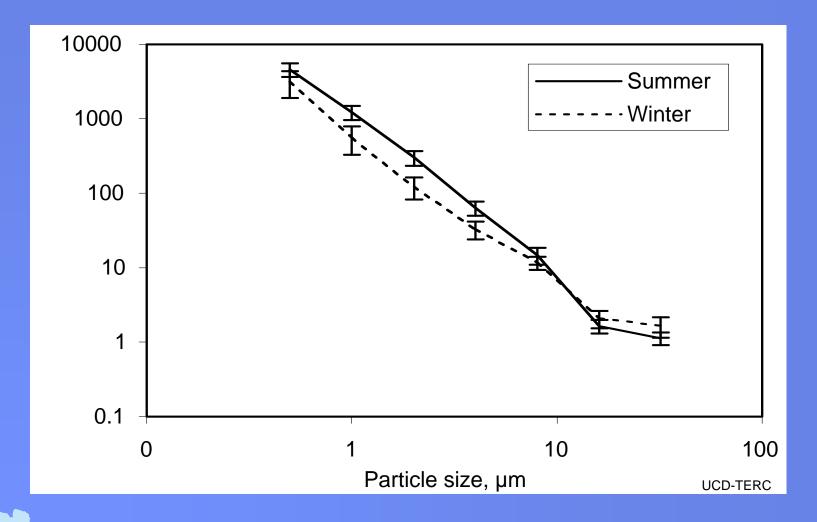

Size Distribution of Urban Fine Particles


From Tetra Tech, UCD & DRI

Lake Tahoe TMDL Science Results

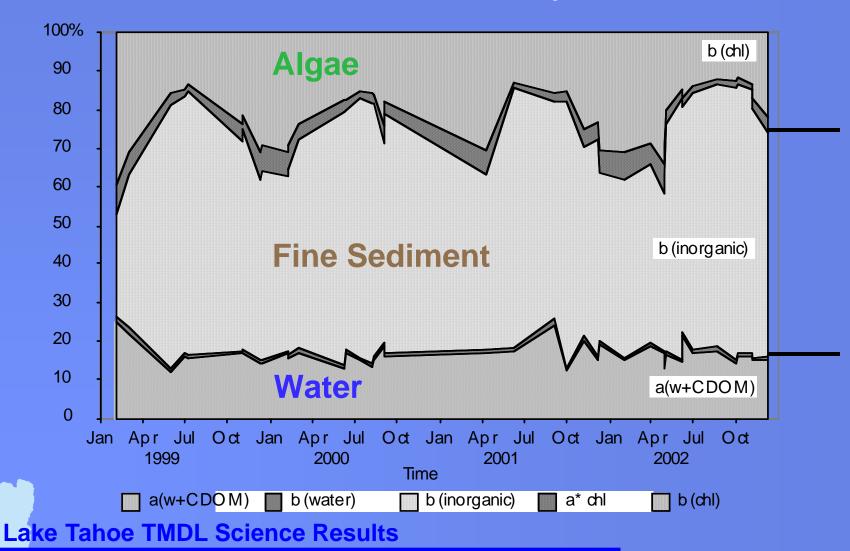
Estimated Particle Load Numbers

Relationship Between Total # Particles and Secchi Depth



Lake Tahoe TMDL Science Results

What do Particles Look Like



Particle Distribution in Lake Tahoe

Lake Tahoe TMDL Science Results

Contribution of Fine Sediment, Algae, DOM and Water to Tahoe's Clarity Attenuation

Features of TMDL Science Program

- Largest scientific effort at Lake Tahoe
- Significant at national level
- Involves >150 people
- Significant financial commitments
- Creating tools that will last and evolve with the continual improvement cycle
- Made possible by important financial commitments to Lake Tahoe